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My research primarily focuses on using data-driven methods to infer dynamics. I primarily work towards

constructing models related to biological pathways, although the methods developed can be applied to

other types of networks with an underlying dynamical system. Furthermore, I used data-driven methods

to infer symbolic forms for underlying conservation laws while keeping the amount of required data to

a minimum. This can then be combined with the my method or other machine learning techniques to

infer the dynamical system while maintaining the system’s conservative nature. Once the dynamics are

known, features such as adaptation can be tested. My work presents a scope of adaptation into a graph

theory and an algebraic geometry framework, making it accessible and useful to a broader audience. I

am interested in uncovering why biological networks behave the way they do and how this can be used

to help inform other sciences. These results have applications in disease research, such as for cancers

and drug therapies, or can be applied in other fields such as control theory. This research has lead

to three publications so far: (1) inferring dynamics from biological data [1], (2) inferring conservation

laws[2] and (3) extension of existing adaptation criteria [3].

Inferring Dynamics [1]

My work focuses on recovering the dynamics for biological networks from data [1], thus helping to

eliminate utilizing assumptions to construct the model. My inspiration for this work began with the

Sparse Identification of Nonlinear Dynamics (SINDy) method proposed by [4]. The SINDy algorithm

presents a method for automating the discovery of the governing equation and takes advantage of the

assumption that many dynamical systems,
d

dt
x = f(x), x ∈ Rn, have dynamics with only a few active

terms in the space of all possible right-hand side functions.

Consider time-series dataX = [x(t1), . . . ,x(tN )]T ∈ RN×n harvested from experiments and assuming

the structure of the dynamical system is a generalized linear model: fk(x) ≈ Θ(x)ξk, k = 1, . . . , n where

Θ(x) ∈ R1×l, ξk ∈ Rl×1, l is the number of candidate nonlinear functions in Θ(x), and ξk contains the

fewest nonzero terms as possible. Nonzero entries of the sparse vector ξk correspond to the active terms

in the resulting dynamical system. Here, Θ(x) refers to the library of candidate nonlinear functions

constructed from the data: Θ(X) =
[
1 X X2 . . . Xd . . . sin(X) . . .

]
. At this stage, SINDy

uses l1-normalized sparse regression on ξk = argmin
ξ
′
k
∥Ẋk − Θ(X)ξ

′
k∥2 + λ∥ξ′

k∥1, where λ is used to

enforce sparsity, to obtain the underlying dynamics. While powerful, choosing an optimal λ can prove

computationally difficult.

I propose an alternative approach which avoids enforcing sparsity by taking advantage of the under-

lying algorithm for solving a least squares problem with non-negativity constraints. Non-negative Least

Squares (NNLS)[5] proved to be the solution and responds well to noise and performed effectively even

in a low data environment. Consider instead an approximation of f(x) using a generalized linear model:

fk(x) ≈
[
Θ(x)

−Θ(x)

]
ωk (1)

where Θ is a library of candidate nonlinear functions constructed from the data and ωk ≥ 0 contains the

fewest terms as possible. Inputting the time series data and applying NNLS, the minimization problem

is now:

ωk = argmin
ω

′
k≥0

∥∥∥∥ [ Θ(X)

−Θ(X)

]
ω

′
k − Ẋk

∥∥∥∥
2

(2)

where the top entries of ωk will correspond to positive coefficients in the recovered dynamics and the

bottom entries are the negative.

This formalism works well for systems containing dynamics that can be written in the form Θξ,

however, it is ineffective for those containing rational functions, such as Michaelis–Menten kinetics. Both
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Implicit SINDy[6] and SINDy-PI[7] alter the classic SINDy algorithm to infer rational dynamics. In

similar fashion, I extend the NNLS approach to allow for dynamical systems of the form
d

dt
xk(t) =

fN (x)

fD(x)
where fN (x) and fD(x) represent the numerator and denominator polynomials in the state variable

x ∈ Rn respectfully. Now fN,k(x) and fD,k(x) can be approximated by generalized linear models:

fN,k ≈ ΘN (x)ωN,k and fD,k ≈ ΘD(x)ωD,k, where ΘN (x),ΘD(x) are the candidate function libraries

and ωN,k,ωD,k are the corresponding coefficients. Therefore:

ΘN (x)ωN,k −ΘD(x)ωD,kẋk = 0 (3)

In order to apply NNLS and avoid a null space problem, assume the coefficient associated with the xkẋk
term is 1 and thus solve:

xkẋk = ΘN (x)ωN,k − Θ̃D(x)ωD,kẋk (4)

where Θ̃D is the ΘD matrix with the column corresponding to xk removed. Alternatively, a different

coefficient can be set to 1 and the process will be similar. The optimal ωN,k and ωD,k can now be found

using a similar method as before.

Inferring Conservation Laws [2]

While working on inferring dynamics, it became clear that many contained underlying conservation laws.

Building upon the ideas proposed in [8], I have developed a robust data-driven computational framework

that automates the process of identifying the number and type of the conservation law(s) while keeping

the amount of required data to a minimum. As with my approach using NNLS, I consider a dynamical

system
d

dt
x = f(x) but now include a potential conservation law, g(x) = C (if multiple exist, subscripts

will be used). As before, let X = [x(t1), . . . ,x(tN )]T ∈ RN×n be experimental data collected for the

system with associated derivative Ẋ. Rather than linearizing the dynamics, the conservation law will be

rewritten as: g(x) = C ≈ Θ(X)ξ, where Θ(x) is a symbolic library of non-constant candidate functions,

{θi(x)}i,...p. The derivative with respect to time can then be taken to obtain: 0 =
d

dt
(Θ(x))ξ = Γ(x, ẋ)ξ.

Applying the data to the problem yields: min
ξ ̸=0

∥Γ(X, Ẋ)ξ∥.

The problem now equates to finding a non-trivial null space for Γ(X, Ẋ). This can easily be done by

computing the singular value decomposition (SVD) and identifying all right singular vectors associated

with 0 or close to 0 singular values. Robustness of the proposed methodology is based on the provable

stability of the singular values and singular vectors to the level of noise present in the data. While this

method can determine if the system contains a conservation law in terms of library functions θi(x), it

requires the user to at least have all the correct library functions and does not eliminate the possibility

of over-fitting the model. Building upon this approach, I propose an algorithmic approach which allows

the user to cycle through multiple library configurations and outputs the optimal form, if one exists.

Consider a set of distinct Θ-libraries, Φ = {Θ(1), . . . ,Θ(k)} where Θ(i) ∈ Rpi . For each Θ(i), find

the corresponding Γ(i)-library and it’s SVD, U (i)S(i)(V (i))T . Each S(i) contains the singular values

σ
(i)
1 ≤ . . . ≤ σ

(i)
pi on the diagonal. Let j denote the index of the first singular value below a predefined

cutoff such that σ
(i)
j , . . . , σ

(i)
pi < σcutoff. Let count

(i) = length
[
σ
(i)
j . . . σ

(i)
pi

]
= pi − j +1 if there exists

at least one σi.

Each δ(i) measures the discrepancy between the singular values which approximate the matrix and

those which contribute to the null space. Optimal libraries will have a large δ(i), indicating that there

is a clear distinction between the two sets. Small δ(i) indicate that σ
(i)
j−1 could have potentially been

included in the other set had the threshold value allowed it. This process is outlines in Figure 1. In [2],

several benchmark examples are tested using low data and added noise.
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Figure 1: Flowchart detailing the process for selecting the optimal Θ-library.

Robust Perfect Adaptation [3]

Once there is a known dynamical system for a biological network, it can be analyzed and features

can be identified. The second aspect of my work focuses on understanding and extending the notion

of Robust Perfect Adaptation (RPA). Adaptation in the sense of asymptotic tracking of a ‘set-point,’

has been widely explored in the literature [9, 10] at various levels ranging from an individual cell to

the whole-organism level in mammals. At the cellular level, several types of adaptation have been

studied in previous works, including perfect adaptation [11], fold-change detection (FCD) [12], absolute

concentration robustness [13], homeostasis [14], and robust perfect adaptation [15]. All of these concepts

share adapting behavior, although they highlight certain specific types of adaptive behavior. My focus

will be on understanding and extending the criteria under which a biological network will exhibit RPA.

Robust perfect adaptation (RPA) refers to the property of a biological system to return to the same

activity level following any persistent change to the incoming signal received at the input node, without

the need for fine-tuning of parameters [15]. There are several reported instances of RPA occurring in

biological systems, such as in bacterial chemotaxis [16, 17, 18], EGFR-regulated signaling pathways

([11, 19]), and transcription networks [20].

Consider a system with state space denoted as P ⊂ RN . The state space consists of N nodes, say

P(t) = [P1(t), . . . , PN (t)]T ∈ P, representing the interacting molecules of interest, such as proteins,

RNA transcripts, genes. Let U ⊂ RM be the input space and U(t) = [U1(t), U2(t), . . . , UM (t)]T ∈ U be

the time dependent input to the system. Consider the nonlinear dynamical system (5) for this system.

dPi

dt
= fi(U,P) i = 1, ..., N (5)

For a system to exhibit RPA, the following two conditions must be met:

det(MIO) = 0 (6)

det(DPF) ̸= 0 (7)

where (6-7) is precisely the RPA equation and RPA constraint as defined in [15]. The RPA criteria

defined above fails to account for systems in which the Jacobian at the network steady state is singular.

To this end, I have developed criteria which extends the notion of RPA to account for a system in which

det(DPF) = 0. The new criteria relies on computing a reduced SVD of the Jacobian matrix and using

the Moore-Penrose pseudoinverese to solve the problem. The theorem containing this new criteria is

stated and proven in [3].

Now, it just remains to identify when a Jacobain will be singular at the network steady state. I

address this in [3] where several cases are proven to contain a singular Jacobian at the steady state. These

cases include networks which include linear and non-linear conservation laws and network structures

which are modelled by an equation involving two or more proteins, such as a molecular compound.

Future Directions

As I have worked on these problems, I have seen that there are many areas where the current work can

be extended. Below I provide some future research ideas I will be exploring.

https://toelleri.github.io/



Tracey Oellerich 4/5

Adaptation from an Algebraic Geometry Viewpoint

Currently, the criteria for adaptation is defined in linear algebra terms; however, there is room to extend

these results using an algebraic geometry approach. Future work includes extending the results for the

conservation laws and special network structures to an algebraic interpretation. In recent years, many

mathematicians have approached systems biology using algebraic geometry. In her paper, Dickenstein

[21] provides a survey of the recent applications of algebraic geometry in the understanding of systems

biology. By extending these conditions to a more algebraic interpretation, there will be a connection

between networks that exhibit RPA as presented in Araujo et al. [15] and those which require the

generalized RPA condition.

Comparison and Extension of Methods for Inferring Dynamics

In my work, I have both seen and employed various methods for inferring dynamics. One area of

exploration is to consider the benefits and costs for each method and where one may prefer to use a

specific method. Furthermore, I am exploring encoding our method into a neural-network like system

which will use each new guess as the initial for the next round of optimization. Finally, I am working to

reduce the amount of numerical approximation needed to initialize the algorithm by employing integrals

in the optimization routine instead of approximating derivative values.

Machine Learning Approach for Discovering Conservation Laws

At present, the algorithm presented in Figure 1 is limited by what libraries the user chooses to compare.

One could instead construct a global library of possible function forms and iterate over the power set,

excluding the empty set and sets containing a single state variable. While this approach will more

accurately infer all possible conservation laws, assuming the correct functions are in the global library,

it is significantly more computationally demanding for if ΘT
global ∈ Rk, 2k−1−k sub-libraries should be

considered in the algorithm. On a similar thread, for systems with multiple conservation laws originating

from different sub-libraries (say one linear and one with only 3rd order terms), δ can be significantly

close. Currently, user supervision would be required if there is a close decision. Future algorithms will

be designed to output a set of possible libraries with sufficiently close δ values.

Modeling of Biological Pathways

The overall goal of this research is to apply it to biological data and test a protein-protein interaction

network for adaptation. Thanks to collaboration with Dr. Mariaelena Pierobon at the Center for

Applied Proteomics and Molecular Medicine (CAPMM), GMU, I have access to data for the mitogen-

activated protein kinase (MAPK) pathway, a pathway which plays a role in various cancers when

dysregulated. The MAPK signaling pathway is a key regulator of different cellular processes, such as

gene expression and cellular growth, and deciphering the mechanisms of action and regulation for the

MAPK pathway remains a challenge from a biological perspective.

While there is a growing interest in exploring these dynamic interactions from a biological prospec-

tive, modeling of systems such as the MAPK pathway presents multiple challenges due to a lack of

populated data and the combinatorial increase in complexity when considering the full-scale reaction

network. This work proposes an innovative data-driven multidisciplinary approach that combines quan-

titative experimental measurements of network dynamics with mathematical modeling to devise novel

multi-scale pattern-oriented methods for dissecting and understanding signal transduction-based mech-

anisms in complex biological samples. This will push the boundaries of sparse dynamics identification

methods by enhancing them with mesoscale network characterization techniques. This novel framework

has a potential to find broad applicability for illuminating basic molecular mechanisms associated with

different pathological processes, uncovering target-able interactions within these networks, and predict-

ing network adaptation mechanisms and response to perturbations with applications across different

fields of biomedical disciplines and mathematics.
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